What role do students’ cultures play in science learning? And how might teachers use formative assessments to root science learning in students’ cultural contexts, interests, and identities? This open educational resource is designed to help educators develop cultural formative assessments that build on students’ pre-existing interests, identities, and knowledge.

This session describes one possible technique for formative assessment, student “self-documentation” of where they see a particular theme in their everyday lives, describing an example use case of a self-documentation activity and how it was incorporated into a culturally diverse classroom. This resources also guides educators in thinking about particular goals for incorporating cultural formative assessment into their own practice.

This resource is designed to be used as a professional development session of 60-70 minutes for educators. The module includes all of the resources that PD facilitators need to adapt and run the sessions—including slides, speaker notes, facilitator guide, and embedded resources. It may be more useful for educators after they have already participated in either or both of the following professional development sessions:

- ACESSE A: Intro to Formative Assessment to Support Equitable 3D Instruction | stemteachingtools.org/pd/sessiona
- ACESSE B: How to Assess 3D Learning in the Classroom | stemteachingtools.org/pd/sessionb

The professional development module supports the following specific goals for educators:

- Learn how to promote equity and social justice as the focal point of NGSS implementation work by focusing on learning and teaching as an inherently cultural process.
- Develop a shared understanding of how cultural formative assessment can reveal the interests, experiences, and identities of students.
- Understand how and when to use different kinds of cultural formative assessment to guide instruction — and ‘overlap’ the curriculum with the lives of youth.

stemteachingtools.org/pd/sessionc

The ACESSE Project is funded by the National Science Foundation through the Education and Human Resources Core Research program under grant #1561300.