Science and Engineering Practices
1. Asking questions (for science) and defining problems (for engineering)
2. Developing and using models
3. Planning and carrying out investigations
4. Analyzing and interpreting data
5. Using mathematics and computational thinking
6. Constructing explanations (for science) and designing solutions (for engineering)
7. Engaging in argument from evidence
8. Obtaining, evaluating, and communicating information

Disciplinary Core Ideas
Life Sciences
- **LS1**: From Molecules to Organisms: Structures and Processes
- **LS2**: Ecosystems: Interactions, Energy, and Dynamics
- **LS3**: Heredity: Inheritance and Variation of Traits
- **LS4**: Biological Evolution: Unity and Diversity

Earth and Space Science
- **ESS1**: Earth's Place in the Universe
- **ESS2**: Earth's Systems
- **ESS3**: Earth and Human Activity

Physical Science
- **PS1**: Matter and Its Interactions
- **PS2**: Motion and Stability: Forces and Interactions
- **PS3**: Energy
- **PS4**: Waves and Their Applications in Technologies for Information Transfer

Engineering, Technology and the Application of Science
- **ETS1**: Engineering Design
- **ETS2**: Links Among Engineering, Technology, Science, and Society

Crosscutting Concepts
1. Patterns.
2. Cause and effect.
3. Scale, proportion, and quantity
4. Systems and system models
5. Energy and matter
7. Stability and change

Key Definitions
- **Grade Level**: The grade level(s) of the Performance Expectation
- **DCI**: Disciplinary Core Idea
- **Title of the Standard**: Heading on the top of the page of the standard
- **PE**: Performance Expectation
- **AB**: Assessment Boundary
- **CS**: Clarification Statement
- **SEP**: Science and Engineering Practice
- **CC**: Crosscutting Concept
- **CCSS**: Common Core State Standards